Improved proteomic analysis pipeline for LC-ETD-MS/MS using charge enhancing methods.
نویسندگان
چکیده
Electron transfer dissociation (ETD) is a useful and complementary activation method for peptide fragmentation in mass spectrometry. However, ETD spectra typically receive a relatively low score in the identifications of 2+ ions. To overcome this challenge, we, for the first time, systematically interrogated the benefits of combining ion charge enhancing methods (dimethylation, guanidination, m-nitrobenzyl alcohol (m-NBA) or Lys-C digestion) and differential search algorithms (Mascot, Sequest, OMSSA, pFind and X!Tandem). A simple sample (BSA) and a complex sample (AMJ2 cell lysate) were selected in benchmark tests. Clearly distinct outcomes were observed through different experimental protocol. In the analysis of AMJ2 cell lines, X!Tandem and pFind revealed 92.65% of identified spectra; m-NBA adduction led to a 5-10% increase in average charge state and the most significant increase in the number of successful identifications, and Lys-C treatment generated peptides carrying mostly triple charges. Based on the complementary identification results, we suggest that a combination of m-NBA and Lys-C strategies accompanied by X!Tandem and pFind can greatly improve ETD identification.
منابع مشابه
Improved Neuropeptide Identification Bioinformatics and Mass Spectrometry
List of papers This thesis is based on the papers listed below, which are referred to in the text by Roman numerals I-V. Neuropeptidomics: MS applied to the discovery of novel peptides from the brain. An automated method for scanning LC-MS data sets for significant peptides and proteins, including quantitative profiling and interactive confirmation. Striatal proteomic analysis suggests that fir...
متن کاملEnrichment and analysis of nonenzymatically glycated peptides: boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affini...
متن کاملProbing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) offers benefits for the analysis of complex proteomics samples. Advantages include increased dynamic range, increased signal-to-noise, and reduced interference from ions of similar m/z. FAIMS also separates...
متن کاملAnalysis of intact monoclonal antibody IgG1 by electron transfer dissociation Orbitrap FTMS.
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure-function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, i...
متن کاملLC-MS data analysis for differential protein expression detection.
In proteomic studies, liquid chromatography coupled with mass spectrometry (LC-MS) is a common platform to compare the abundance of various peptides that characterize particular proteins in biological samples. Each LC-MS run generates data consisting of thousands of peak intensities for peptides represented by retention time (RT) and mass-to-charge ratio (m/z) values. In label-free differential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2012